Mathematical Programs with Equilibrium Constraints: Enhanced Fritz John-conditions, New Constraint Qualifications, and Improved Exact Penalty Results

نویسندگان

  • Christian Kanzow
  • Alexandra Schwartz
چکیده

Mathematical programs with equilibrium (or complementarity) constraints (MPECs for short) form a difficult class of optimization problems. The standard KKT conditions are not always necessary optimality conditions due to the fact that suitable constraint qualifications are often violated. Alternatively, one can therefore use the Fritz John-approach to derive necessary optimality conditions. While the usual Fritz John-conditions do not provide much information, we prove an enhanced version of the Fritz John-conditions. This version motivates the introduction of some new constraint qualifications (CQs) which can then be used in order to obtain, for the first time, a completely elementary proof of the fact that a local minimum is an M-stationary point under one of these CQs. We also show how these CQs can be used to obtain a suitable exact penalty result under weaker or different assumptions than those that can be found in the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Karush-Kuhn-Tucker Conditions for Mathematical Programs with Equilibrium Constraints

In this paper we study necessary optimality conditions for nonsmooth mathematical programs with equilibrium constraints (MPECs). We first show that MPEC-LICQ is not a constraint qualification for the strong (S-) stationary condition when the objective function is nonsmooth. Enhanced Fritz John conditions provide stronger necessary optimality conditions under weaker constraint qualifications. In...

متن کامل

Two-Level Optimization Problems with Infinite Number of Convex Lower Level Constraints

‎This paper proposes a new form of optimization problem which is a two-level programming problem with infinitely many lower level constraints‎. ‎Firstly‎, ‎we consider some lower level constraint qualifications (CQs) for this problem‎. ‎Then‎, ‎under these CQs‎, ‎we derive formula for estimating the subdifferential of its valued function‎. ‎Finally‎, ‎we present some necessary optimality condit...

متن کامل

Enhanced Karush-Kuhn-Tucker Condition for Mathematical Programs with Equilibrium Constraints

In this paper, we study necessary optimality conditions for nonsmooth mathematical programs with equilibrium constraints. We first show that, unlike the smooth case, the Mathematical Program with Equilibrium Constraints Linear Independent Constraint Qualification is not a constraint qualification for the strong stationary condition when the objective function is nonsmooth. We argue that the str...

متن کامل

Second-Order Optimality Conditions for Mathematical Programs with Equilibrium Constraints

We study second-order optimality conditions for mathematical programs with equilibrium constraints (MPEC). Firstly, we improve some second-order optimality conditions for standard nonlinear programming problems using some newly discovered constraint qualifications in the literature, and apply them to MPEC. Then, we introduce some MPEC variants of these new constraint qualifications, which are a...

متن کامل

Two New Weak Constraint Qualifications for Mathematical Programs with Equilibrium Constraints and Applications

We introduce two new weaker Constraint Qualifications (CQs) for mathematical programs with equilibrium (or complementarity) constraints, MPEC for short. One of them is a tailored version of the constant rank of subspace component (CRSC) and the other is a relaxed version of the MPECNo Nonzero Abnormal Multiplier Constraint Qualification (MPEC-NNAMCQ). Both incorporate the exact set of gradients...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal on Optimization

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2010